

CONCATENATION AND STRETCH/SQUEEZE OF
MUSICAL INSTRUMENTAL SOUND USING SOUND

MORPHING

 Naotoshi Osaka
 NTT Communication Science Laboratories∗

3-1 Morinosato Wakamiya, Atsughi-shi Kanagawa, 241-0193, Japan

∗ Currently, with School of Engineering, Tokyo Denki University. E-mail: osaka@im.dendai.ac.jp

ABSTRACT

Sound morphing is one of the successful synthesis
technologies for recent computer music, and several
studies have been reported on this subject. We have
proposed a sound morphing algorithm based on a
sinusoidal model. In this paper, a correspondence
search algorithm is improved, which is core technology
of morphing based on a sinusoidal model. Then wider
applications of the algorithm are introduced. It can be
used as concatenation of two sounds if morphing
interval is as short as 100 msec. It is also used as
stretch and squeeze of a sound, if the algorithm is
applied to two copies from the same sample. Moreover,
adding a musical expression to an instrumental sound
are discussed.

1. INTRODUCTION

Sound morphing is a synthesis technology that
continuously interpolates two timbres and becomes one
of the important study items in not only computer
music but also in speech research. The author has been
developing the technology based on both sinusoidal
model [1] and physical model [2]. This paper discusses
an improved algorithm and wider application of the
technology to various sound modifications along with
time alignment, such as stretch/squeeze of a sound, and
addition of music expression.

In image morphing, the first step is to find the
corresponding points between the two images. In
commercial software, this correspondence is done
manually. Similarly in sound morphing, there are many
cases when correspondence of represented parameters
for two sounds should be found and interpolated. Since
so many numbers of parameters are needed in a
sinusoidal model, it is not practical to find
correspondence manually. Therefore, certain algorithm
to find the correspondence is indispensable. However,
most of the reported technology avoids to solve the
problem. Peak to peak match algorithm proposed by [3]
works but is an ad hoc algorithm. Fits and Haken also
reported an algorithm based on a sinusoidal
representation [4]. Their method divides the frequency
bands after normalizing by f0. Sinusoidal match is done
only in the correspondent band, and matching is not
done across the different normalized frequency band,
which limits the combination of sinusoids.

Our algorithm faces the correspondence problem,
and tries to find an optimal solution. We call it an
“optimum partner search problem.” In the previous
study, there were cases of not being able to find the
correspondence when sinusoids were placed in
complicated manner between facing frames to be
interpolated. The new version can find the
correspondence in any kinds of sinusoidal placement.

2. SEARCH ALGORITHM OF
CORRESPONDENCE USING DYNAMIC

PROGRAMMING

The algorithm is modified from the original one [1] so
that it finds appropriate correspondence for various
patterns of peak displacements among two successive
frames.

Let xi, (i=0,1,…I-1) and yj, (j=0,1,…,J-1) denote
vectors of two groups. I and J are the numbers of
vectors, respectively, and usually I is not equal to J.
The problem is to decide the combination of close
resemblance for xi-yj pairs so that combination is an
optimum as a whole. It is solved by adopting a criterion
that minimizes total cost among pairs, using dynamic
programming. Total cost is denoted as follows:

)1(),(min)()(

1

0
0 　　　　　　kwi

I

i
i yxCIT ∑

−

=

=

 where wi(k) is a window function for xi to reduce the
search range of y vectors less than distance dth, and is
defined as specific members in y group. Figure 1 shows
a window function and cumulative cost function.
Vectors of each group are lined up in certain order,
practically frequency order. wi(k) is defined as kth
candidates of y group within the window, which ith
vector of x takes into consideration, and is denoted as
an absolute number of y in the order defined above. ni
is a total number of y vectors in the window wi.

(3)

)(
 Otherwize

1,,1,0 ,1 ,)(

),(Case

)2(1,1,0,0)0(

)(














=

−=≤≤∈

≤

−==

φkw

Jjnkjkw

dyxD

Iiw

i

ii

thkwii

i

K

K 　

Fig.1 Cumulative cost Tk
*(i-1) used in the algorithm

xI-1 yJ-1

x0

x1

xi-1

xi

y1

y0

wi

wi-1

wi (3)=j+1

wi-1(3)=wi (2)= j

wi-1(2)= wi (1)= j-1

wi-1(1)= j-2Tk*(i-1)

D(xi,ywi(k))

yj-2

yj-1

yj

yj+1

Fig. 2 Comparison of k* and k*’
acquired from functions F and F’

xi-1

xi

wi

wi-1

wi (k)

wi-1(k*’)

wi-1(k*)

k

k*

k*’

Tk(i) is a cumulative cost function up to the distance
from xi to ywi(k). Cost function is defined basically in
terms of distance between correspondent vectors, and is
defined as D(xi,ywi(k)). However, it also incorporates
value of the case when xi cannot find a partner, dnull.

T’0(i,k) is defined as a cumulative cost for previous
x vector, xi-1 dealing with up to ywi(k), when xi does not
find any correspondent vectors.

The dimension of the cumulative cost function T is
increased by one (3 dimension), if and only if the other
party is not found. Recursive condition is given below:

(5)))0(),,(min()0(
,,2,1for

(4))0(
condition Initial

1)(00

0

0

−=
=
=

kkwk

null

TyxDT
nk

dT
K










+−+

+−+

∞=≠

=

=
≥









+

−+

∞=≠

=

=
=

−

−

allkwii

allkkwii

k

k

i

kwii

kkwii

k

k

dkliTyxD

dliTyxD

kiTk

iT

nk
i

TyxD

liTyxD

ki Tk

iT

nk
i

),('),(

(7))(),(

 1),(1

min)(

,,2,1for
1 Case

(6)

)0(),(

)(),(

 1),(1

min)(

,,2,1for
0 Case

**
0)(

*
*)(

1

0)(

*
*)(

1

1

K

K

(9)
),1('

)1(
 min)(

condition Final
(8))1(

where,

10
0

*

1





−

−
=

−×≡

−

−

I

n

nullall

nIT

IT
IT

ldd

I

k* represents k index in the preceding window, wi-1, to
point ywi(k), and l* indicates how far to look back from
the present position i. These are defined recursively as
follows:
















+
<−
==

−≤
−==

≤−≤

=

≠
==<−

=

≡

−

−

−−

−
−

−−−

−

)1,,,,(
)1(1)(Case

) ,(

(12) 1)()(Case
))1)((,(

)(1)()1(Case

),(

0 Case
(11) ,0 0 Case

1
condition Initial

(10)),,,,(),(

*
**

*
1**

**

**

**

lnkIwF
wkw

nkll

kwnw
kwwkll

nwkww

kl

n
Ilkli

l

lnkIwFkl

lii

li

ilili

ili

liliili

li









−




∞
≠−

+−×=

=

+=

=−

),('

(15) otherwise ,
,1),(

min)1(),('

(14) .)0(
:as defined is)(Moreover,

(13))1,,,,(),(

0 Case

'
0

**

*
0

0

0

**

kliT

lliT
ldkiT

dT
kiT

lnkIwFkl

n

k*'

null

null

li

 Similar to F, k*’ and l* are defined as follows:

(17) ,0 ,0 Case

1
:condition Initial

(16)),,,,(),(

**'

'*'*

Ilkli

l

lnkIwFkl

==<−

=

≡
















+
<
==

≤
==

≤≤

=

≠

−

−

−−

−
−

−−−

−

)1,,,,(
)1()(Case
) ,(

 (18))()(Case
)))((,(

)()()1(Case

),(

0 Case

*
'

*
1*'*

'

lnkIwF
wkw

nkll

kwnw
kwwkll

nwkww

kl

n

lii

li

ilili

ili

liliili

li

(19))1,,,,(),(

0 Case
'*'* +=

=−

lnkIwFkl

n li

 While xi points the kth candidate of y vector in wi;
wi(k), k*’ is defined as an index when preceding x, xi-1,
points the same y vector. k* remains the same
definition. Fig.2 compares both F and F’. dnull is
defined appropriately by a user in the same dimension
as a distance. Different values of dnull give the different
optimum combination. Fig. 3 gives three examples of
such a case.
 Three characteristics of the algorithm are;
1) A distance function to sort vector members in order

to use a window function and cost function to find
correspondence of x and y vectors do not have to
be the same distance function.

2) Total cost from x to y and y to x are not the same and
does not satisfy reflexive law, or reflexive law is
not proved.

3) When sorting is done using a distance function
defined in a window function, optimum
combination is derived so as not to cross over the
correspondent member, that is, combination of, say,
3-7 and 4-5 do not happen.

 Fig. 4 depicts applied results of the algorithm to peak
to peak match problem. For a) through c), distance
function to regulate the window function is defined in
one dimension using frequency, as well as the function
used to line up peaks (a) and b)). On the other hand, in
c), two dimensional distance function in terms of
frequency and amplitude is used in calculating distance
of x and ith candidate of a partner, that is, D(xi,ywi(k)). In
each of a) to c), matching is done to the near candidate,
having nothing to do with the umber of members. In c),
we can tell that matching is done, taking amplitude into
consideration.

3. APPLICATION TO THE CONCATENATION
OF SOUND FRAGMENTS AND EXPRESSION

ADDITION TO THE SUSTAINED
INSTRUMENTAL SOUNDS

The algorithm stated in the previous chapter is used for
both peak to peak match of the two succeeding frames
in sinusoidal model, and morphing of two original
sounds. Other applications introduced here are the
special cases of morphing when transferring time from
one sound to another is very short; concatenation.
Three functions are introduced here:
1. Concatenation of two original sounds with

different timbres.
2. Concatenation of two original sounds with the

same timbre.
3. Stretch/Squeeze of a single sound.

For 1 and 2, if morphing is done in as short as about
100 msec, it is no longer morphing, but becomes
concatenation perceptually. Fig. 5 shows these
functions.

x2

y2

x0

x1

y1

y0

dnull

a

a
b

b

b

Case 1 dnull < 3b-2a
Case 2 dnull > 3b-2a

Case 0 none dnull < a <b

Fig.3 Different combination results
for various values of dnull

 (1) depicts a concatenation of two different timbres.
This can be applied to speech synthesis.

3.1. Addition of music expression by controlling
concatenation interval

(2)-1 of fig. 5 depicts a concatenation of two samples
with the same timbre. Concatenation of different
expression for the same instrument is possible. In string
instruments, concatenation timing and interval can
control the expression of slurring and bowing.

(2)-2 of fig.5 shows another example of a
concatenation for different pitch sounds. This can be
interpreted as an implementation of portament.

3.2. Stretch and squeeze of sound
(3)-1 and 2 of fig. 5 depict the stretch and squeeze of a
sound, respectively. Stretch requires two copies of a
sample. Concatenation is done for the overlapped
interval, and the sound is stretched as long as the time
delay of the latter copy. On the other hand, squeezing is
done for the truncated copies of an original sound. The
former uses the head part of the copy, while the latter
uses the tail part of the copy. These functions are useful
in music composition when sound resources are limited.

So far these technologies have been applied to a
real computer music pieces: “Nubatama II”, limited
sound resources for a tiny baby are used, and sound
interval are controlled appropriately by stretch and
squeeze. All the functions introduced from (1) through
(3), including intrinsic morphing function.

4. CONCLUSION

Improved version of a correspondence search algorithm,
using dynamic programming, is proposed, which is a
core technology of sound morphing based on a
sinusoidal model. The algorithm is rather complicated,
but works for complicated combinations of sinusoidal
patterns for real sounds. Variety of applications besides
morphing are introduced, starting peak to peak match
of succeeding two frame of a sample, and including
music expression addition and sound duration control.
Finding other music applications using this algorithm is
a topic for the further study.

yJ
xi

2.9

Fr
eq

ue
nc

y
[k

H
z]

3.0

3.2

3.1

3.8

3.7

3.6

3.5

3.4

3.3

4.0

3.9

4.1

yJxi

Fr
eq

ue
nc

y
[H

z]

Ampli
tud

e100

200

300

400

500

0

500

0

Fig. 4 Examples of peak to peak match

b) Another example of
scalar x and y

c) vector x and y, repre-
senting frequency
and amplitude

yJxi

100

200

300

400

500

600

0

Fr
eq

ue
nc

y
[H

z]

a) scalar x and y, rep-
resenting only
frequencies

Timbre morphing

Timbre A

Timbre B

Morphing
interval 2000 ms

100 ms

(1) Musically meaningful timber morphing

Timbre concatenation

-

Performance A

Performance B

Morphing interval 400–100 ms

(2)-1 Different performance concatenation
Pitch A

Pitch B

Morphing interval 400–100 ms
(2)-2 Different pitch concatenation

Portament
concatenation

Sample A

Sample A

Morphing interval

(3)-1 Stretching a sample
Head part of sample A

Tail part of sample A

Morphing
interval
(3)-2 Squeezing a sample

Fig. 5 Various applications of sound morphing

5. REFERENCES

[1] Osaka, N. “Timbre interpolation of sounds using a
sinusoidal model,” Proc. of ICMC ‘95, pp. 408-411,
Banff, Canada, 1995.

[2] Hikichi, T. and Osaka, N. “Sound timbre interpolation
based on physical modeling,” Acoustical Science and
Technology, pp. 101-111, Feb. 2001.

[3] McAulay, R. and Quatieri, T., “Speech analysis/synthesis
based on a sinusoidal representation,” IEEE Trans. on
ASSP, vol. ASSP-34, No4. pp. 744-754, Aug. 1986.

[4] Fits, K., Haken, L., Lefvert, and S., O’Donnell, M.
“Sound morphing using Loris and the reassigned
bandwidth enhanced additive sound model: Practice
and applications,” Proc. Of ICMC ‘02, pp. 393-400,
Gothenburg, 2002.

