
  
 

 

CONCATENATION AND STRETCH/SQUEEZE OF 
MUSICAL INSTRUMENTAL SOUND USING SOUND 

MORPHING

 Naotoshi Osaka  
 NTT Communication Science Laboratories∗ 

3-1 Morinosato Wakamiya, Atsughi-shi Kanagawa, 241-0193,  Japan  
 

                                                           
∗ Currently, with  School of Engineering, Tokyo Denki University. E-mail: osaka@im.dendai.ac.jp 

ABSTRACT 

Sound morphing is one of the successful synthesis 
technologies for recent computer music, and several 
studies have been reported on this subject. We have 
proposed a sound morphing algorithm based on a 
sinusoidal model. In this paper, a correspondence 
search algorithm is improved, which is core technology 
of morphing based on a sinusoidal model. Then wider 
applications of the algorithm are introduced. It can be 
used as concatenation of two sounds if morphing 
interval is as short as 100 msec. It is also used as 
stretch and squeeze of a sound, if the algorithm is 
applied to two copies from the same sample. Moreover, 
adding a musical expression to an instrumental sound 
are discussed. 

1. INTRODUCTION 

Sound morphing is a synthesis technology that 
continuously interpolates two timbres and becomes one 
of the important study items in not only computer 
music but also in speech research. The author has been 
developing the technology based on both sinusoidal 
model [1] and physical model [2]. This paper discusses 
an improved algorithm and wider application of the 
technology to various sound modifications along with 
time alignment, such as stretch/squeeze of a sound, and  
addition of music expression.  

In image morphing, the first step is to find the 
corresponding points between the two images. In 
commercial software, this correspondence is done 
manually. Similarly in sound morphing, there are many 
cases when correspondence of represented parameters 
for two sounds should be found and interpolated. Since 
so many numbers of parameters are needed in a 
sinusoidal model, it is not practical to find 
correspondence manually. Therefore, certain algorithm 
to find the correspondence is indispensable. However, 
most of the reported technology avoids to solve the 
problem. Peak to peak match algorithm proposed by [3] 
works but is an ad hoc algorithm. Fits and Haken also 
reported an algorithm based on a sinusoidal 
representation [4]. Their method divides the frequency 
bands after normalizing by f0. Sinusoidal match is done 
only in the correspondent band, and matching is not 
done across the different normalized frequency band, 
which limits the combination of sinusoids.   

Our algorithm faces the correspondence problem, 
and tries to find an optimal solution. We call it an 
“optimum partner search problem.” In the previous 
study, there were cases of not being able to find the 
correspondence when sinusoids were placed in 
complicated manner between facing frames to be 
interpolated. The new version can find the 
correspondence in any kinds of sinusoidal placement. 

2. SEARCH ALGORITHM OF 
CORRESPONDENCE USING DYNAMIC 

PROGRAMMING 

The algorithm is modified from the original one [1] so 
that it finds appropriate correspondence for various 
patterns of peak displacements among two successive 
frames. 

Let  xi, (i=0,1,…I-1) and yj, (j=0,1,…,J-1) denote 
vectors of two groups. I and J are the numbers of 
vectors, respectively, and usually I is not equal to J. 
The problem is to decide the combination of close 
resemblance for xi-yj pairs so that combination is an 
optimum as a whole. It is solved by adopting a criterion 
that minimizes total cost among pairs, using dynamic 
programming. Total cost is denoted as follows: 
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 where wi(k) is a window function for xi to reduce the 
search range of y vectors less than distance dth, and  is 
defined as specific members in y group. Figure 1 shows 
a window function and cumulative cost function. 
Vectors of each group are lined up in certain order, 
practically frequency order. wi(k) is defined as kth 
candidates of y group within the window, which ith 
vector of x takes into consideration, and is denoted as 
an absolute number of y in the order defined above. ni 
is a total number of y vectors in the window wi. 
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Fig.1  Cumulative cost Tk
*(i-1) used in the algorithm
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Fig. 2    Comparison of k* and k*’
acquired from functions F and F’
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Tk(i) is a cumulative cost function up to the distance 
from xi to ywi(k). Cost function is defined basically in 
terms of distance between correspondent vectors, and is 
defined as D(xi,ywi(k)). However, it also incorporates 
value of the case when xi cannot find a partner, dnull. 

T’0(i,k) is defined as a cumulative cost for previous 
x vector, xi-1 dealing with up to ywi(k), when xi does not 
find any correspondent vectors. 

The dimension of the cumulative cost function T is 
increased by one (3 dimension), if and only if the other 
party is not found. Recursive condition is given below: 
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k* represents k index in the preceding window, wi-1, to 
point ywi(k), and l* indicates how far to look back from 
the present position i. These are defined recursively as 
follows: 
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 Similar to F, k*’ and l* are defined as follows: 

(17)                                 ,0  ,0    Case

1
:condition Initial

(16)                                         ),,,,(),(

**'

'*'*

Ilkli

l

lnkIwFkl

==<−

=

≡
















+
<
==

≤
==

≤≤

=

≠

−

−

−−

−
−

−−−

−

)1,,,,(
)1()(  Case
)  ,(

  (18)               )()(  Case
)))((  ,(

)()()1(  Case

),(

0  Case

*
*'*

*
1*'*

*'*

lnkIwF
wkw

nkll

kwnw
kwwkll

nwkww

kl

n

lii

li

ilili

ili

liliili

li

 



  
 

 

(19)                              )1,,,,(),(

0   Case
'*'* +=

=−

lnkIwFkl

n li  

 
   While xi points the kth candidate of y vector in wi; 
wi(k), k*’ is defined as an index when preceding x, xi-1, 
points the same y vector. k* remains the same 
definition. Fig.2 compares both F and F’. dnull is 
defined appropriately by a  user in the same dimension 
as a distance. Different values of dnull give the different 
optimum combination. Fig. 3 gives three examples of 
such a case.  
   Three characteristics of the algorithm are; 
1) A distance function to sort vector members in order 

to use a window function and cost function to find 
correspondence of  x and y vectors do not have to 
be the same distance function. 

2) Total cost from x to y and y to x are not the same and 
does not satisfy reflexive law, or reflexive law is 
not proved. 

3) When sorting is done using a distance function 
defined in a window function, optimum 
combination is derived so as not to cross over the 
correspondent member, that is, combination of, say, 
3-7 and 4-5 do not happen. 

   Fig. 4 depicts applied results of the algorithm to peak 
to peak match problem. For a) through c), distance 
function to regulate the window function is defined in 
one dimension using frequency, as well as the function 
used to line up peaks ( a) and b)). On the other hand, in 
c), two dimensional distance function in terms of 
frequency and amplitude is used in calculating distance 
of x and ith candidate of a partner, that is, D(xi,ywi(k)). In 
each of a) to c), matching is done to the near candidate, 
having nothing to do with the umber of members. In c), 
we can tell that matching is done, taking amplitude into 
consideration. 

3. APPLICATION TO THE CONCATENATION 
OF SOUND FRAGMENTS AND EXPRESSION 

ADDITION TO THE SUSTAINED 
INSTRUMENTAL SOUNDS 

The algorithm stated in the previous chapter is used for 
both peak to peak match of the two succeeding frames 
in sinusoidal model, and morphing of two original 
sounds. Other applications introduced here are the 
special cases of morphing when transferring time from 
one sound to another is very short; concatenation.  
Three functions are introduced here: 
1. Concatenation of two original sounds with 

different timbres. 
2. Concatenation of two original sounds with the 

same timbre. 
3. Stretch/Squeeze of a single sound.  

For 1 and 2, if morphing is done in as short as about 
100 msec, it is no longer morphing, but becomes 
concatenation perceptually. Fig. 5 shows these 
functions. 
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 (1) depicts a concatenation of two different timbres. 
This can be applied to speech synthesis. 

3.1.  Addition of music expression by controlling 
concatenation interval 

(2)-1 of fig. 5 depicts a concatenation of two samples 
with the same timbre. Concatenation of different 
expression for the same instrument is possible. In string 
instruments, concatenation timing and interval can 
control the expression of slurring and bowing. 

(2)-2 of fig.5 shows another example of a 
concatenation for different pitch sounds. This can be 
interpreted as an implementation of portament. 

3.2. Stretch and squeeze of sound 
(3)-1 and 2 of fig. 5 depict the stretch and squeeze of a 
sound, respectively. Stretch requires two copies of a 
sample. Concatenation is done for the overlapped 
interval, and the sound is stretched as long as the time 
delay of the latter copy. On the other hand, squeezing is 
done for the truncated copies of an original sound. The 
former uses the head part of the copy, while the latter 
uses the tail part of the copy. These functions are useful 
in music composition when sound resources are limited. 

So far these technologies have been applied to a 
real computer music pieces: “Nubatama II”, limited 
sound resources for a tiny baby are used, and sound 
interval are controlled appropriately by stretch and 
squeeze. All the functions introduced from (1) through 
(3), including intrinsic morphing function. 

4. CONCLUSION 

Improved version of a correspondence search algorithm, 
using dynamic programming, is proposed, which is a 
core technology of sound morphing based on a 
sinusoidal model. The algorithm is rather complicated, 
but works for complicated combinations of sinusoidal 
patterns for real sounds. Variety of applications besides 
morphing are introduced, starting peak to peak match 
of succeeding two frame of a sample, and including 
music expression addition and sound duration control. 
Finding other music applications using this algorithm is 
a topic for the further study.  
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Fig. 5 Various applications of sound morphing 
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